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ABSTRACT

High order essentially non-oscillatory (ENO)schemes, originally designed for compress-

ible flow and in general for hyperbolic conservation laws, are applied to incompressible

Euler and Navier-Stokes equations with periodic boundary conditions. The projection to

divergence-free velocity fields is achieved by fourth order central differences through Fast

Fourier Transforms (FFT) and a mild high-orde r filtering. The objective of this work is to

assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is

used and small scale features of the flow, such as shears and roll-ups, are not fully resolved.

It is found that high-order ENO schemes remain stable under such situations and quantities

related to large-scale features, such as the total circulation around the roll-up region, are

adequately resolved.
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3Research supported by ARO grant DAAL03-91-G-0123, NASA Langley grant NAGl-l145 and NASA
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1 Introduction

In this paper we consider numerically solving the incompressible Navier-Stokes or Euler

equations

ut + uux + vuy

vt + uvx ÷ VVy

U x ÷ Vy

or their equivalent conservative form

= _(u_ + uyy) - px

= _(v_x + vyy) - py

= 0

(1.1)

ux ÷ vy = 0

(1.2)

where (u, v) is the velocity vector, p is the pressure, # > 0 for the Navier-Stokes equations and

# = 0 for the Euler equations. The numerical methods we use are the high-order essentially

non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for

hyperbolic conservation laws [8], [12]. The equation is defined on the box [0,2_r] x [0,2_]

with periodic boundary conditions in both directions. We choose two space dimensions for

easy presentation, although our method is also applicable for three space dimensions.

In some sense equations (1.1) are easier to solve numerically than their compressible

counter-parts because the latter have solutions containing possible discontinuities (for ex-

ample shocks and contact discontinuities). However, the solution to (1.1), even if for most

cases smooth mathematically, may evolve rather rapidly with time t and may easily become

too complicated to be fully resolved on a feasible grid. Traditional linearly stable schemes,

such as spectral methods and high-order central difference methods, are suitable for the

cases where the solution can be fully resolved, but typically produce signs of instability such

as oscillations when small scale features of the flow, such as shears and roll-ups, cannot be

adequately resolved on the computational grid (see, for example, the last contour in Fig. 1).

Although in principle one can always overcome this difficulty by refining the grid, today's

computer capacity seriously restricts the largest possible grid size.

In the last few years there is a lot of activity in designing high-order, nonlinearly stable

"shock capturing" schemes for compressible flow and in general for hyperbolic conservation

laws. See, for example, [2], [7], [8], [12], and the references listed therein. The philosophy of

such schemes is to give up fully resolving rapid transition regions or shocks, just to "capture"



them in astableand somehowglobally correct fashion(e.g.,with correctshockspeed),but at

the sametime to requirea high resolutionfor the smoothpart of the flow. The successof such

an approachfor the compressibleflow is documentedby many examplesin the literature.

One example is the one and two dimensionalshock interaction with vorticity or entropy

waves[12], [13]. The shock is captured sharply and certain key quantities related to the

interaction betweenthe shockand the smoothpart of the flow, suchasthe anaplificationand

generationfactorswhena wavepassesthrough a shock,arewell resolved.Another exampleis

the homogeneousturbulencefor compressibleNavier-Stokesequationsstudied in [13]. In one
of the test cases,the spectral method can resolveall the scalesusing a 2562grid, while third

order ENO with just 642points canadequatelyresolvecertain interesting quantities suchas

the averagefluctuation Mach number and maximum divergence,although it cannot resolve

local quantities achievedinside the rapid transition regionsuchasthe minimum divergence.

The conclusionseemsto be that, when fully resolving the flow is either impossibleor too

costly, a "capturing" schemesuchas ENO can be usedon a coarsegrid to obtain at least

somepartial information about the flow.
In this paper weperform a similar numerical study for the incompressibleequation (1.1),

to seewhat one can get by using the high-order ENO schemeson a coarsegrid, without

fully resolvingthe flow. We choosedoubly periodic shearlayers,usedin [1], asour test case.

A spectral method with 5122points seemsable to fully resolvethe flow up to t = 8, but

begins to show signs of underresolution (wrjgg!es in vorticity)thereafter._ This indicates the

tremendous requirement upon computation resources if one tries to resolve everything in the

flow. We then use the third order ENO method (which is fourth order in the L1 sense) and

coarse grids (642 and 1282 points), to assess its resolution. We find that the scheme remains

stable for coarse meshes and certain quantities related to the smooth part of the flow, such

as the total circulation around the roll-up, are adequately resolved by ENO methods.

A pioneer work in applying shock capturing compressible flow techniques to incompress-

ible flow is by Bell, Colella and Glaz [1], in which they considered a second order Godunov

type discretization, investigated the projection into divergence-flee velocity fields for general

boundary conditions, and discussed accuracy of time discretizations. Since our objective in

this paper is to assess the resolution of the ENO method for (1.1), we choose a periodic

boundary condition to simplify the projection. General boundary conditions would have to

be handled either by more complicated projection [1] or by artificial compressibility methods

[4]. We are currently investigating ENO schemes for such cases.
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2 The ENO Method

We solve (1.2) in its equivalent projection form

(U)v[(u )uv=P - - + + (2.1/
t x y xx yy

where P is the Hodge projection into divergence-free fields, i.e.,if (fi)=P( u)_ v , then

fix + vy = 0 and _?y- fix = vy- ux. See, e.g., Ill. For the current periodic case the additional

condition to obtain a unique projection P is that the mean values of u and v are preserved,

i.e., aor2_Jor2_ft(x,y)dxdy = fo _ fg'u(x,y)dxdy and f_'_ f:= 5(x,y)dxdy = f_ fg'v(x,y)dxdy.

We use Nx and Ny (even numbers) equally Spaced grid points in x and y, respectively.

The grid sizes are denoted by Ax = N__ and Ay = N-r and the grid points are denoted by2r 21r

xi = iAx and yj = jAy. The approximated numerical values of u and v at the grid point

(xi, yj) are denoted by uij and vii.

We first describe the numerical implementation of the projection P. In the periodic case

this is easily achieved in the Fourier space. We first expand u and v using Fourier collocation:

___ _ _ ___ q_E=
2 2 2 2

UN(X,y)= __, _, _kf (kx+tu), vy(x,y)= __, _ _3kte'(kx+tu) (2.2)

_=___k=--_ ,=__k=-_

where I = x/-Z-T, fikl and _)kt are the Fourier collocation coeMcients which can be computed

from the point values uij and vii, using either FFT or matrix-vector multiplications. The de-

tail can be found in, e.g., [3]. Derivatives, either by spectral method or by central differences,

involve only multiplications by factors d_ or _ in (2.2) because e l(kx+zu) are eigenfunctions

of such derivative operators. For example,

d_ = Ik, d_ = II (2.3)

for spectral derivatives;

2I sin(k_-) 2I sin( t_2--_-) (2.4)
d_ - zXx ' _ - Ay

for the second order central differences which, when used twice, will produce the second

order central difference approximation W_+l-2_o.+_,__, for wxx, and
Ax 2

d_ = 2I_/(1 - cos(kAx))(7 - cos(kAx))_,_ , _=
2I_/(1 - cos(lAy))(7 - cos(lay))

Ay

(2.5)
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for the fourth order central differenceswhich, whenusedtwice, will producethe fourth order

central differenceapproximation 16(w,_,.+_,,_l)-(_,,+a+_,__a)-a0w, for w_. High order filters, such12Ax 2

as the exponential filter [10], [9]:

_, k_2p ___(¢_7)_, (2.6)O"k : e-_'_N-; j , 0"] j -= e,

where 2p is the order of the filter and a is chosen so that e -_ is machine zero, can be used

to enhance the stability while keeping at least 2p-th order of accuracy. This is especially

helpful when the projection P is used for tlie under-resolved coarse grid with ENO methods.

We use the fourth order projection (2.,5) and the filter (2.6) with 2p = 8 in our calculations.

This will guarantee third order accuracy (fourth order in L_) of the ENO scheme. We will

denote this combination (the fourth order projection plus the eighth order filtering) by P4.

(u) =p4(U) andfikLandbklareFouriercollocationcoetTicientsofuTo be precise, if _ v

and v, then the Fourier collocation coefficients of _ and _? are given by

^ X_ ,75"A

a,%.y_(_u-d k ) ^ -d_(_t-d_,v) (2.7)
: ' ¥ = +

where o'_ and o-_ are defined by (2.6) with 2p = 8, and d_ and _ are defined by (2.5).

Next we shall describe the ENO scheme for (2.1). Since (2.1) is equivalent to the non-

conservative form (1.1), it is natural to implement upwinding by the signs of u and v, and

to implement ENO equation by equation. The r-th order ENO approximation of, e.g., (u_)_

is thus summarized as follows:

=

7_

IN

=

1. Take f(x) = u2(x,y) with y fixed. We start with the point values f_ = f(x_);

1 fx+
2. Define a function h(x) satisfying f(z) = _ j__,,_ h(_)d_, and its primitive H(x) =

2

f" h(()d_. For each j + ½, a (r + 1)-th order polynomial Qj+,/2(x) is constructed

interpolating H(x) at points near x#+1/2. It is remarked in [12] that the Newton

divided differences of H(x) are constant multiples of those of f(x) of one order lower.

Since we do not need the zeroth order difference, the approximation Qj+_/_ of H(z)

can be accomplished using the information of fi only, without explicitly constructing

H(z) or its differences;

3. The stencil of the polynomial Q(x) is determined adaptively by upwinding and smooth-

ness of f(x). It starts with either zj or Zj+l according to whether u > 0 or u < 0, then

one point to the left or right is added to the stencil each time by comparing the two

relevant divided differences and picking the smaller one in magnitude.

4



4. The derivative f'(x) is finally approximated by the conservative difference _g(fj+l/2-

J_-,/2) where the numerical flux is computed by L+1/2 =

5. In the act;ual coding of the algorithm, undivided differences should be used instead of

the divided differences to reduce round-off errors. There are also ways to make the

procedure more economical on a vector computer. The details can be found in [13].

The approximation to (uv)_: is the same as above with f(x) = u(x,y)v(x,y), and that

for (uv)y and for (v2)y are similar, with upwinding based on v.

There are two ways to handle the second derivative terms for the Navier-Stokes equations.

One can absorb them into the convection part and treat them using ENO. For example,

f(x) = u2(x,y) can be replaced by f(x) = u2(x,y)- #u(x,y),_ , where u(x,y)x itself can be

obtained using either ENO or central difference of a suitable order. The remaining procedure

for computing f(x)_ would be the same as described above. Another simpler possibility is

just to use standard central differences (of suitable order) to compute the double derivative

terms. Our experience with compressible flow is that there is little difference between the

two approaches, especially when the viscosity # is small.

In the above we have described the discretization for the spatial derivatives

[(U2)(UV)((U)(U))]L_j_ - - v: +t_ + (2.8)
UV x Y U xx V YY X _ X i

Y =Yj

Next we use a third order TVD (total variation diminishing) Runge-Kutta method [11] to

discretize the resulting ODE:

obtaining:

u ) = P4Lij (2.9)
V t

u = P4 u + AtL, 3
V ?2

vU = P4 v +4 v + (2.10)

Notice that we have used the property P4 o P4 = P4 in obtaining the discretization (2.10)

from (2.9).



This explicit time discretization is expected to be nonlinearly stable under the CFL
condition

L w \--_-_--x+ +2# _x_x2+_ySy 2 <1 (2.11)

(see [11]). For small # (which is the case we are interested in) this is not a serious restriction

on At.

3 Numerical Results

We present two numerical examples in this section.

Example 1" This example is used to check the third order accuracy of our ENO scheme

for smooth solutions. We first take the initial condition as

u(x,y,O) = - cos(x) sin(y), v(x,y,O) = sin(x) cos(y)

which was used in [5]. The exact solution for this case is known:

(3.1)

u(x,y,t) = -cos(x)sin(y)e -2"t, v(x,y,t) = sin(x)cos(y)e -2"' (3.2)

1
We take Ax = Ay = _ with N = 32, 64,128 and 256. The solution is computed up

to t = 2 and the L_ error and numerical order of accuracy are listed in Table 3.1. For the

/z = 0.05 case, we list results both with fourth order central approximation to the double

derivative terms (central) and with ENO to handle the double derivative terms by absorbing

them into the convection part (ENO). We can clearly observe fully third order accuracy

(actually better in many cases because the spatial ENO is fourth order in the La sense) in

this table.

2

z

=

Table 3.1: Accuracy of ENO Schemes for (3.1)

N #=0

L2 error order

32 9.10(-4)

64 5.73(-5) 3.99

128 3.62(-6) 3.98

256 2.28(-7) 3.99

# = 0.05, central

L2 error order L2 error

5.28(-4) 4.87(-4)

3.20(-5) 4.04 3.09(-5)

1.93(-6) 4.05 1.89(-6)

1.18(-7) 4.03

# = 0.05, ENO
order

1.16(-7)

3.98

4.03

4.03

We then take the initial condition as

6



u(x,y,O) = - sin2(x) sin(2y), v(x,y,O) = sin(2x) sin2(y) (3.3)

1 with N = 16, 32, 64, 128 and 256 andwhich was used in Ill. We again take Ax = Ay =

compute the solution up to t = 2. However, this time the exact solution is unknown. As

in Ill, we test the accuracy by computing the L2 difference between the solutions at the

grid sizes 2Ax and Ax, on the coarser grid. If WAx = W + CAx r + O(Ax_+1), then this

difference W2Ax -- W/,_ = (2 _ -- 1)CAx" + O(Ax TM) would predict the correct asymptotic

order of accuracy r and the error itself on the finer grid multiplied by 2_ - 1. The result is

summarized in Table 3.2, where w = (u,v) T and L2 diff= ][w2z_ - WA_I[L_. In this table

the estimated order and error are obtained using the remarks above. For # = 0.05, we have

again provided results both with fourth order central approximation to the double derivative

terms (central) and with ENO to handle the double derivative terms by absorbing them

ilato the convection part (ENO). The result in Table 3.2 reconfirms better than third order

accuracy for the third order ENO scheme.

Table 3.2: Accuracy of ENO Schemes for (3.3)

N

32

64

128

256

/_=0

L2 diff order

1.14(-1)

1.40(-2) 3.02

1.46(-3) 3.26

1.11(-4) 3.77

# = 0.05, central

error L2 diff

3.20(-2)

1.96(-3) 2.78(-3)

1.69(-4) 1.81(-4)

8.78(-6) 1.09(-5)

order

3.52

3.94

4.06

# = 0.05, ENO

error L2 diff .j

3.60(-2)

2.66(-4) 2.93(-3)

1.26(-5) 1.80(-4)

1.10(-5)6.91(-7)

order

3.62

4.02

4.04

error

2.60(-4)

1.18(-5)

7.15(-7)

Example 2: This is our test example to study resolution of ENO schemes when the grid

is coarse. It is a double shear layer taken from [1]:

tanh((y- 7r/2)/p) y < 7r v(x,y,O) = 5sin(x) (3.4)u(x,y,O) = tanh((37r/2-y)/p) y > 7r

where we take p = r/15 and 6 = 0.05. The Euler equations (# = 0) are used for this example.

The solution quickly develops into roll-ups with smaller and smaller scales, so on any fixed

grid the full resolution is lost eventually. For example, the expensive run we performed using

5122 points for the spectral collocation code (with a 18-th order filter (2.4)) seems able to

resolve the solution fully up to t = 8, then begins to lose resolution as indicated by the

wriggles in the vorticity contour at t = 10 (the last contour in Fig. 1). On the other hand,

the ENO runs with 642 and 1282 points produces smooth, stable results (Fig. 2 and 3).

Apparently with these coarse grids the full structure of the roll-up is not resolved. However,

when we compute the total circulation



=/_ =fa udx+vdy (3.5)ca _.,(x, y)dxdy a

around the roll-up by taking gt = [=_,-_] × [0,27r] and using the rectangular rule (which is

infinite order accurate for the periodic case) on the line integrals at the right-hand-side of

(3.5), we can see that this number is resolved much better than the roll-up itself (see Table

3.3).

Table 3.3: Resolution of the Total Circulation

t 2 4 6 8 10

ENO 642 0.87300 3.07100 7.16889 9.88063 10.90122

ENO 1282 0.87452 2.97810 7.30999 10.34414 11.79418

spectral 512 _ 0.87433 2.98029 7.28308 10.46212 I1.85875

4 Concluding Remarks

High order ENO schemes can be applied to the incompressible Euler and Navier-Stokes

equations to obtain stable, under-resolved results on a coarse grid. Some global quantities

such as the circulation around the roll-up region call be faithfully resolved.

z
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Figure 1: The vorticity contour for Example 2 at t = 4, 6, 8, 10. Spectral method with 5122

points.
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Figure 1 continued:
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Figure 2:

points.
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The vorticity contour for Example 2 at t = 4,6, 8, 10. ENO method with 64 _
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Figure 2 continued:

t=8 (2D)IIPrintllfort48.pltll
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Figure 3: The vorticity contour for Example 2 at t = 4,6,8, 10. ENO method with 1282

points.
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Figure 3 continued:
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